11,323 research outputs found

    Modeling Multicomponent Fuel Droplet Vaporization with Finite Liquid Diffusivity Using Coupled Algebraic-Dqmom with Delumping

    Get PDF
    Multicomponent fuel droplet vaporization models for use in combustion CFD codes often prioritize computational efficiency over model complexity. This leads to oversimplifying assumptions such as single component droplets or infinite liquid diffusivity. The previously developed Direct Quadrature Method of Moments (DQMoM) with delumping model demonstrated a computationally efficient and accurate approach to solve for every discrete species in a well-mixed vaporizing multicomponent droplet. To expand the method to less restrictive cases, a new solution technique is presented called the Coupled Algebraic-Direct Quadrature Method of Moments (CA-DQMoM). In contrast to previous moment methods for droplet vaporization, CA-DQMoM solves for the evolution of two liquid distributions by coupling a monovariate, homogeneous DQMoM approach with additional algebraic moment equations, allowing for a more complex droplet vaporization model with finite rates of liquid diffusion to be solved with computational efficiency. To further decrease computational expense, an approximation that employs the same nodes for both distributions can be used in certain cases. Finally, a delumping technique is adapted to the finite diffusivity model to reconstruct discrete species information at minimal computational cost. The model is proven to be accurate relative to a full discrete component model for both a kerosene droplet comprised of 36 species and a multicomponent droplet of 200 species while maintaining the computational efficiency of continuous thermodynamics models. The combined accuracy and computational efficiency demonstrated by the CA-DQMoM with delumping model for a multicomponent fuel droplet with finite liquid diffusivity makes it ideal for incorporation into CFD models for complex combustion process

    Solar pond power plant feasibility study for Davis, California

    Get PDF
    The feasibility of constructing a solar pond power plant at Davis, California was studied. Site visits, weather data compilation, soil and water analyses, conceptual system design and analyses, a material and equipment market survey, conceptual site layout, and a preliminary cost estimate were studied. It was concluded that a solar pond power plant is technically feasible, but economically unattractive. The relatively small scale of the proposed plant and the high cost of importing salt resulted in a disproportionately high capital investment with respect to the annual energy production capacity of the plant. Cycle optimization and increased plant size would increase the economical attractiveness of the proposed concept

    A Hybrid Droplet Vaporization-Chemical Surrogate Approach for Emulating Vaporization, Physical Properties, and Chemical Combustion Behavior of Multicomponent Fuels

    Get PDF
    The complex nature of multicomponent aviation fuels presents a daunting task for accurately simulating combustion behavior without incurring impractical computational costs. To reduce computation time, chemical fuel surrogates comprised of only a few species are used to emulate the combustion of complex pre-vaporized fuels. These surrogates are often unable to match the vaporization behavior and physical properties of the real fuel and fail to capture the effect of preferential vaporization on combustion behavior. Therefore, a computationally efficient, hybrid droplet vaporization-chemical surrogate approach has been developed which emulates both the physical and chemical properties of a multicomponent kerosene fuel. The droplet vaporization/physical portion of the hybrid uses the Coupled Algebraic–Direct Quadrature Method of Moments with delumping to accurately solve for the evolution of every discrete species in a vaporizing fuel droplet with the computational efficiency of a continuous thermodynamic model. The chemical surrogate portion of the hybrid is linked to the vaporization model using a functional group matching method, which creates an instantaneous surrogate composition to match the distribution of chemical functional groups (CH2, (CH2)n, CH3 and Benzyl-type) in the vaporization flux of the full fuel. The result is a hybrid method which can accurately and efficiently predict time-dependent, distillation-resolved combustion property targets of the vaporizing fuel and can be used to investigate the effects of preferential vaporization on combustion behavior
    • …
    corecore